
 Laravel Advance

Request Life cycle:

Request Entry

● The user makes an HTTP request to the Laravel application.
● The request is handled by the server (e.g., Apache or Nginx) and

routed to public/index.php.

Autoloading

● Composer’s autoload file (vendor/autoload.php) is loaded to
handle class autoloading.

Bootstrap Application

● bootstrap/app.php is loaded to create the Laravel
application instance.

● An instance of Illuminate\Foundation\Application is
initialized.

HTTP Kernel Initialization

● The application resolves the HTTP Kernel
(app/Http/Kernel.php) to handle the request.

● The kernel defines global middleware, route middleware, and
middleware groups.

Register Service Providers

● Service providers listed in config/app.php are registered.
● These providers boot services, bindings, and dependencies for

the application.

Middleware Processing (Before Request)

● Global middleware is applied (e.g., session handling, encryption,
etc.).

● Route-specific middleware is executed for additional
functionality.

Routing

● The RouteServiceProvider maps the request to a route
defined in routes/web.php or routes/api.php.

● The route resolves the associated controller, closure, or resource
method.

Controller Execution

● The matched controller or closure is executed.
● Dependencies for the controller are injected by the Service

Container.

Business Logic and Database Interaction

● Models, Eloquent ORM, or Query Builder interact with the
database.

● Any required data processing or business logic is executed.

View Rendering

● The controller may return a view, which is processed by the
Blade templating engine.

● The Blade templates are compiled into plain PHP for efficiency.

Response Creation

● A response object (Illuminate\Http\Response) is created
to encapsulate the output.

● The response may include views, JSON, redirects, or files.

Post-Middleware Processing

● Middleware with terminate() methods are executed after the
response is sent (e.g., logging, cleaning up resources).

Request Completion

● The application lifecycle ends, and the response is delivered to
the client.

Dependency Injection:
Dependency Injection (DI) is a technique where a class

depends on another class but instead of creating an

instance inside the class, it gets "injected" from the

outside.

Dependency Injection (DI) is a design pattern used to

remove hard coded dependencies in a class, making the

code more flexible, reusable, and easier to test.

In simple terms:

● Instead of a class creating its own dependencies,

they are "injected" from the outside.

● This allows for easy swapping of different

implementations without modifying the class.

There are number of ways to Inject Dependency –

1. Constructor Injection

2. Setter Injection

3. Interface Injection

Service Container:
 Service Container or IoC in laravel is responsible
for managing class dependencies meaning not every file
needs to be injected in class manually but is done by the

Service Container automatically. Service Container is
mainly used in injecting classes in controllers like Request
object is injected. We can also inject a Model based on id
in route binding.

For example, a route like below:
Route::get('/profile/{id}','UserController@profile’);

With the controller like below

public function profile(Request $request, User $id)

{

//

}

In the UserController profile method, the reason we can

get the User model as a parameter is because of the

Service Container as the IoC resolves all the dependencies

in all the controllers while booting the server. This process

is also called route-model binding

Service Provider:
 A Service Provider is a way to bootstrap or
register services, events, etc before booting the
application. Laravel’s own bootstrapping happens using
Service Providers as well. Additionally, it registers service
container bindings, event listeners, middlewares, and even
routes using its service providers.
If we are creating our application, we can register our

facades in provider classes.

Type of service providers: (Before laravel 11)

 When we install a fresh

laravel project, it comes with 5 service provider classes, all provider
classes have a common boot method, app service provider has
default register method in it, we can add register method in other
provider classes too.

● App service provider
● Auth service provider
● Broadcast service provider
● Event service provider
● Route service provider

Difference of boot and register method:

Register:
● Purpose: Used to bind services into the service container.
● When it runs: This method is called before the application is fully booted.
● What to do here:

○ Register bindings (e.g., interfaces to concrete classes).
○ Register singletons, aliases, or service providers.

● Limitations:
○ Avoid using other services or dependencies here because the application

is not fully booted yet.
○ For example, you cannot access the Request object or other bound

services in the register method.

Boot:
● Purpose: Used to perform actions after all services have been registered.
● When it runs: This method is called after all service providers have been

registered.
● What to do here:

○ Register event listeners.
○ Define routes or view composers.
○ Perform any actions that depend on other services being registered.

● Advantages:

○ You can access other services and dependencies here because the
application is fully booted.

App Service Provider:
 App service provider is used for changes
which can be used in whole application, it allows you register your
own services throughout the laravel application, for example if you
don’t want to use default laravel pagination view, you can change its
view in the app service provider’s boot method,similarly if you want to
make your own blade directive such as (@date) so you can make it in
the app service provider’s boot method.

Auth Service Provider:
 Auth service provider is used to register
policies and change in authentication functionality.

Broadcast Service Provider:

Event Service Provider:
 Event service provider is used to
manage events in application,In simple terms, the

EventServiceProvider helps you manage and respond to events that
occur within your Laravel application.

Route Service Provider:
 When you have to alot of routes and
you want to separate them in another file, you can do this in route
service provider class, we can also write rules for route parameters in
the boot method, we can change resource route urls in the url bar, we
can define route model binding etc.

Difference of all providers:
 Only difference between all these
provider classes is their names. We can bind events in
AppServiceProvider too, but it is good practice to write all
the logic in its corresponding class.

Facades:
 Facades in Laravel are simple static-like shortcuts to
access Laravel's services (like Cache, DB, Auth) without
needing to manually inject dependencies.

Facades are globally accessible throughout your
application without needing to inject dependencies into
constructors or methods.

Why Use Facades?

Easy to Use – No need to create objects manually
Clean Code – No need for dependency injection in small
tasks
 Readable – Looks like a static method but works with
Laravel's service container

Laravel provides some default facades too which we can
use like in the pic below:

When To Use Facades

https://laravel.com/docs/7.x/facades#when-to-use-facades

Facades have many benefits. They provide a terse,

memorable syntax that allows you to use Laravel's

features without remembering long class names that must

be injected or configured manually. Furthermore, because

of their unique usage of PHP's dynamic methods, they are

easy to test.

We can make our own custom facades as well, in order to
make our own facade of any class we will create a class
first, For example if we are making a facade of the Invoice
class,

 we will make a class named InvoiceFacade,

In this class we will make a private method named
getFacadeAccessor() and we return our facade name
from this method, we will use this name for our facade
throughout the app.

Now we will bind Invoice class with name Invoice in the
AppServiceProvider,like in the pic below

After binding, we will create its alias in the Config\app.php
like in the pic below

Now we can use facade like this,

Collections:
 The Laravel collection is a useful feature of the
Laravel framework. A collection works like a PHP array,
but it is more convenient. The collection class is located in
the Illuminate\Support\Collection location. A collection
allows you to create a chain of methods to map or reduce
arrays.

We can create collections with the collect() helper function.
 $collection = collect([1, 2, 3]);

We can use multiple methods on the collections which are
given by laravel, for example, sum(), avg(), all(),
sort(),map(),filter() etc.

map():
 The map method iterates through the collection and passes
each value to the given callback. The callback is free to modify the
item and return it, thus forming a new collection of modified items:

filter():
 The filter method filters the collection using the given
callback, keeping only those items that pass a given truth test:

If no callback is supplied, all entries of the collection that are
equivalent to false will be removed:

Contracts:
 Laravel's Contracts are a set of interfaces that
define the core’s provided by the framework. For example,
a Queue contract defines the methods needed for
queueing jobs, while the Mailer contract defines the
methods needed for sending email.
Laravel contracts contain interfaces about related
functionality.

Queues:
 Laravel provides this feature to make queue for
different events, in simple words if you are performing a
task which takes time to complete, you can queue it, let's
say user is adding data into database, data is big and it
will take time to upload, so we will make queue for it,
benefit of the queue is, it doesn’t block user, for example if
user uploading a big amount of data which takes time so it

will keep uploading data in the background meanwhile
user can perform other action in parallel.

How to use queues:
 First we will make a queue table in the database
using artisan command.

php artisan queue:table
php artisan migrate

After making the database table we will make a job class
through artisan command.
php artisan make:job ProcessPodcast

Change QUEUE_DRIVER value to database in .env file

Once a job is created, the job class will contain a handle
method in which we add all our logic which we want to
queue.
<?php

namespace App\Jobs;

use App\AudioProcessor;
use App\Podcast;
use Illuminate\Bus\Queueable;
use Illuminate\Contracts\Queue\ShouldQueue;

use Illuminate\Foundation\Bus\Dispatchable;
use Illuminate\Queue\InteractsWithQueue;
use Illuminate\Queue\SerializesModels;

class ProcessPodcast implements ShouldQueue
{
 use Dispatchable, InteractsWithQueue, Queueable,
SerializesModels;

 protected $podcast;

 /**
 * Create a new job instance.
 *
 * @param Podcast $podcast
 * @return void
 */
 public function __construct(Podcast $podcast)
 {
 $this->podcast = $podcast;
 }

 /**
 * Execute the job.
 *
 * @param AudioProcessor $processor
 * @return void
 */
 public function handle(AudioProcessor
$processor)
 {
 // Process uploaded podcast...
 }

}

After all these things, we will have to trigger the job like
below

ProcessPodcast::dispatch($podcast);

If you want to delay your queue the you will use delay
method like below,
ProcessPodcast::dispatch($podcast)

->delay(now()->addMinutes(10));
 This will not stop user from performing any action and it
will start queue job after ten minutes,

After all these change just run the queue worker to run the
queue
php artisan queue:work

Difference of queues and jobs:

Queues

1. Definition:
○ A queue is a data structure that follows the First-In-First-Out (FIFO)

principle. It holds tasks (jobs) that need to be processed asynchronously.
○ In the context of frameworks like Laravel, a queue system allows you to

defer the processing of tasks to a later time or to a separate process.
2. Purpose:

○ Queues are used to manage and distribute tasks efficiently, especially for
time-consuming operations like sending emails, processing images, or
handling API requests.

○ They help improve application performance by offloading tasks to
background workers.

3. How It Works:
○ Tasks (jobs) are added to a queue.
○ A queue worker (or multiple workers) processes the jobs in the queue one

by one.
4. Example:

○ In Laravel, you can configure queues to use different backends like Redis,
database, or Amazon SQS.

○ Example: Sending 1,000 emails. Instead of sending them synchronously
(which would block the application), you add them to a queue, and a
worker processes them in the background.

Jobs

1. Definition:
○ A job is a unit of work that needs to be performed. It encapsulates the

logic for a specific task.
○ In Laravel, jobs are typically classes that implement the

Illuminate\Contracts\Queue\ShouldQueue interface, indicating they
should be processed asynchronously.

2. Purpose:
○ Jobs are used to define the specific task that needs to be executed, such

as sending an email, generating a report, or processing data.
○ They are the individual units of work that are pushed into a queue.

3. How It Works:
○ A job is created and dispatched to a queue.
○ The queue worker picks up the job and executes its handle method.

4. Example:
○ In Laravel, you might create a job called SendWelcomeEmail that sends an

email to a user.
○ Example code:

You dispatch the job to a queue:

Event Listeners and Events:

Events:
 We can use events when we want to perform any
action on a specific event.For example if a user changes
his profile picture and we want to send him email after the
completion then we can use events, or if we want to send
slack notification on specific action, we can use events for
that.
We make events by the artisan command, let's make a
post event.
 Php artisan make:event PostEvent
After running this command a new event will be created in
the App\Events directory.

Listeners:
 Listeners are the part of events, when we create an
event, we need to make the listener listen to that event
and put all our logic in the events.
Same like events, we can make listeners through the
artisan command,
 Php artisan make:listener NotifyUser

After running this command a new listener class will be
created in the App\Listeners directory.

Why Use Events & Listeners?

1. Separation of Concerns → Keeps logic clean by
separating event triggers from responses.

2. Improves Maintainability → Changes to one part of
the app don’t require changes to others.

3. Better Performance → Offloads time-consuming
tasks to the background using queues.

4. Extensibility → Easily add more listeners without
modifying existing code.

Notifications:
 Notifications can be used to notify users
about anything, for example we have a functionality of
events and listeners, when a user signed up, it triggers an
event which sends notification to the admin about the
newly signed up user. We can send notification to the
listener of that event.

Cron job & task scheduling:

Task Scheduling:
If we want to do a task at a later point of time, you will

schedule it at a certain point of time. For this we use laravel
task scheduling or cron jobs.

Cron Job:

 In the server we schedule a task using cron jobs.

To perform a laravel cron job, we will write all the logic in
the custom artisan command class and then we schedule
that command into App\Console\Kernel.php class.

Eager Loading:
 When we load relations along with the model
it is called eager loading, see example below:
 $heading_attributes = Family::with(['attributes'])->get();

In the above example, we are loading the Family model
with its relation with attributes. We use eager loading in
fetching large amounts of data.

Lazy Loading:
 Lazy loading in Laravel is a feature that allows you to
load related data on-demand, rather than loading it all at once when
retrieving a record from the database. This can help to improve the
performance of your application by reducing the number of database
queries executed.

Laravel Relations:
 Laravel has different relations

1. One to One
2. One to Many
3. Many to Many
4. Has one Through
5. Has many Through
6. One to One (polymorphic)
7. One to Many (polymorphic)
8. Many to Many (polymorphic)

One to One:

 In this relationship, one database record will be
related to the other only one record, for example we have
two database tables, User and Phones, now we have a
scenario in which a user can only have one phone, so that
we can say this is a one to one relationship between user
and posts.

One to Many:

 In this relationship, one database record
could be related to one or more records, for example we
have two tables named Users and Posts, so now in this

case if a user can add more than one post, let's suppose if
a user adds 2 posts, so that those 2 posts will be related
to that particular user. In this case we can say we have
one to many relationship.

Many to Many:

 In this relationship, multiple database
records could be related to other multiple records, let's
suppose we have 2 tables, Users and Roles, so if a user
have roles of author, publisher, these two roles can also
be assigned to other users as well, for this purpose we
have to make three database tables,

● Users
● Roles
● Roles_user

Roles_user is a pivot table in which we will save user_id
and role_id as a foreign key. When we call a relationship
from any model whether it is user table or role table, it will
load the relationship from pivot table automatically.

Pivot table name should be in alphabetically
ascending order.

Has one through:

 In this relationship type we can access
third tables records from the database without making
relationship, let's suppose we have a car maintenance
application in which we have three tables:

● cars
● owners
● mechanics

In these tables, cars table will have column mechanic_id
and owners table will have car_id as foreign key, now we
can access owners table record through cars table.

Has many through:

 This is the convenient way to accessing
relations, for example we have 3 tables

● countries
● users
● posts

Now in the post table we don't have country_id as a
foreign key, we have user_id instead, and users table have

country_id as a foreign key, now we can get posts of the
user by calling its relationship into the countries model.

One to One (polymorphic) :
 A one-to-one polymorphic
relationship is a situation where one model can belong to
more than one type of model but on only one association.
For example we have two tables, Users and Posts, and
they both could have images, so we will create a third
table name images to save images for the both of the
tables, see example below:

posts
 id - integer
 name - string

users id - integer
 name - string

images
 id - integer

 url - string
 imageable_id - integer
 imageable_type - string

Take note of the imageable_id and imageable_type columns on

the images table. The imageable_id column will contain the ID value of

the post or user, while the imageable_type column will contain the class

name of the parent model. The imageable_type column is used by Eloquent
to determine which "type" of parent model to return when accessing the

imageable relation

One to Many (polymorphic):

 A one-to-many polymorphic relation is
similar to a simple one-to-many relation; however, the
target model can belong to more than one type of model
on a single association.

posts
 id - integer
 title - string
 body - text

videos
 id - integer
 title - string

 url - string

comments
 id - integer
 body - text
 commentable_id - integer
 commentable_type - string

In the above table structures, a post or video can have
multiple comments.

Template Engine:
 Laravel uses blade as template engine.

Eloquent:
 Eloquent is the ORM used to interact with the
database using Model classes. It gives handy methods on
class objects to make a query on the database.

Throttling:

Throttling is the function in Laravel through which

we can limit incoming requests. For throttling, Laravel

provides a middleware that can be applied to routes and it

can be added to the global middlewares list as well to

execute that middleware for each request.

Query Scope:
 There are two types of scopes in laravel,

● Local scope
● Global scope

Local scope:
You can define local scope if you want to implement the same query
for many times, in this way you will only have to write a query for once
in a function and you will use that function in multiple classes.

Global scope:
Global scope can be used when you want a query run
every time when the class runs, we will create this scope
in the booted method of the class.

Traits:
 Php doesn't have multiple inheritance, so that's why
we use traits for that.
Laravel follows a different architectural pattern called
"Composition over Inheritance" to promote code reuse and
maintainability. It encourages developers to use traits,
interfaces, and composition to achieve code organization
and reuse, rather than relying heavily on class inheritance.

Create()/Insert():
 These both used to insert data into
database,

Create:
Laravel eloquent uses create() method to save data

into the database, if you have registered various laravel
events like creating, updating etc in the model this
function runs all laravel events.

Insert:
 Laravel query builder uses insert() method to save
data into the database, it will not run any laravel event.

Gates:
 Gates are the functions defined in the
AuthServiceProvider.php class. These are the functions
in which we can check whether this logged in user can
perform this action or not, these can be used anywhere in
the project.

Policies:
 Policies are similar to the gates, only difference
between them is, gates can only be defined in
AuthServiceProvider.php class, but policies are the
class of specific model class. For example if we want to
make actions for the user model so we can make policy
for it.

Guards:
 Guards differentiate authenticated users, whether it is
admin or simple user. It will differentiate between their
sessions or cookies too. Laravel uses session guard to

authenticate the user and if we are making apis then
laravel uses token guard. Every guard has its own
separate session, it means we can login as an admin and
user in the same browser.

Cascade:
 Cascade is used to update and delete data from
both parents and child tables. The keyword CASCADE is
used as a conjunction while writing the query of ON
DELETE or ON UPDATE.

Providers:
 Providers define how users will be retrieved
from the database, laravel provides two ways to retrieve
users from storage,

● Eloquent
● Query Builder

We can choose either of these options in the
config/auth.php file.

Observers:
 We use observers when we want to trigger
an event on action of any model, for example we have a
user model and we want to perform an action when a new
user is created, we will create a observer class which
listens the created event when a new user created and
perform a desired task, for example we want to send an
email to every new user, we can do this through observer.
Once the observer class is created, we need to bind it to
the user model in the EventServiceProvider class.

Route Model Binding:
 Route model binding is a feature
in Laravel that allows you to bind a route parameter to a model
instance. This makes it possible to retrieve a model instance directly
from the route parameters, without having to fetch it from the
database yourself. For example we want product model binding, we
will do this like in the example below:

We just need to pass id of the product in the route, and laravel will get
its object from the database automatically,

Replacing id with another field:
 If we want to get record by the
slug instead of id we can also do that by the multiple ways, see
example below:

Or we can make its function instead of passing it with parameter, like
below:

Fillable:

Guarded:

Macros:

How to write macros:
 Let's suppose we want to write a macro
which gives us email of the authenticated user, we will make macro in

the register method of the app service provider or we can make also
make our own service provider for that like in the example below:

Now you can call this method anywhere in the app like below:

Request::userEmail();

Form Request:
 Laravel provides a class to validate request
separately instead of writing whole validation login into the controller
itself, it will make our code cleaner and much more readable, form
request can be made by the artisan command it has two methods by
default, auth and rules, we can authorization logic into the auth
method or we can write rules in the rules method, later we can type
hint it in the controller method to use, like in the example below:

Design Patterns:

Types of laravel design patterns:

Singleton Design Pattern:
 The Singleton design pattern is a creational
design pattern that ensures a class has only one instance and
provides a global point of access to it. This pattern is useful when you
want to restrict the instantiation of a class to a single object, and you
need to have a single point of access to that object throughout your
application.

Repository Design Pattern:
 This design pattern separates
business logic and database related operations, like if we have written
all the code in the controller, we will shift the database related code to
the repository class and business logic will remain in the controller,
see the example below:

Here's a step-by-step explanation of how to implement it:

1. Interface: First, you create an interface that describes the
methods that will be used to access the data. For example, if
you're working with a User object, your interface might include
methods like getAllUsers(), getUserById($id),
deleteUser($id), and so on.

2. Repository: Then, you create a repository class that implements
the interface. This class contains the actual database queries.

3. Service Provider: You bind the interface to its implementation in
a service provider. This is typically done in the register
method of a service provider.

4. Controller: Finally, you inject the interface (not the concrete
class) into your controller. This can be done through the
constructor or a method, and Laravel's service container will
automatically resolve the correct implementation.

In the above example we have created an interface and repository
class, and defined getAllUsers() method in interface and implements it
in the repository.

Now we have bound the interface to the repository class, so that we
can access all the functionality written in the repository class through
the interface in the controller.

Now in the above example, we have used that interface in the
controller, so we can use all the methods which are defined into the
interface.

Benefits of Repository pattern:

Factory Pattern:
 The Factory Pattern is a design pattern in
programming that allows you to create objects without specifying the
exact class of object that will be created. This is done by creating a
"factory" method that returns instances of different classes.

Service Pattern:

Difference of Repository and Service pattern:

Api Resource:
 We use api resources to return api responses in
json format, it can be used in many other ways for example if we want

to return specific fields in the response from the collection, we can do
that in resource class etc.

Difference of oauth 2.0 and jwt:

Difference of authentication and
authorization:

Types of errors in php:

Types of arrays:
● Indexed arrays

● Associative arrays

● Multidimensional Arrays

Array Functions:

Difference of where and when:

Where:
 This is used to add a direct condition to a query. It applies the condition
unconditionally and is used in typical query building. For example:

$users = User::where('status', 'active')->get();

When:
This is used to conditionally add a query clause. It allows you to apply a condition only if a
certain condition is true, making the code cleaner when dealing with optional query parameters.
For example:

$status = 'active';
$users = User::when($status, function ($query, $status) {

 return $query->where('status', $status);
 })->get();

Composer:

Composer update:
● Reads composer.json and updates packages to the latest allowed versions.
● Updates composer.lock with new dependency versions.
● Can potentially introduce breaking changes if dependencies update significantly.

Use Case

● When you want to update dependencies to their latest compatible versions.
● After modifying composer.json (e.g., adding a new package manually).

Composer install:
● Reads composer.lock and installs the exact versions listed.
● Ensures consistency across different environments.
● Does not update composer.json or composer.lock.

Use Case

● When cloning a project (git clone).
● During deployment to ensure package versions remain the same.

Composer dump-autoload:
● Rebuilds the vendor/autoload.php file.
● Optimizes class loading by regenerating class maps.
● Does not install, update, or remove dependencies.

Use Case

● After adding new classes or namespaces manually.
● When experiencing issues with class loading (e.g., "Class not found" errors).

Bind and singleton:

Bind:
● Creates a new instance every time it is resolved.
● Suitable for services that need fresh instances on each request.

Singleton:
● Returns the same instance every time it is resolved.
● Useful for shared services like database connections, caching, or loggers.

	Request Life cycle:
	Request Entry
	Autoloading
	Bootstrap Application
	HTTP Kernel Initialization
	Register Service Providers
	Middleware Processing (Before Request)
	Routing
	Controller Execution
	Business Logic and Database Interaction
	View Rendering
	Response Creation
	Post-Middleware Processing
	Request Completion
	Dependency Injection:
	Service Container:
	Service Provider:
	Type of service providers: (Before laravel 11)
	Difference of boot and register method:
	Register:
	Boot:
	App Service Provider:
	Auth Service Provider:
	Broadcast Service Provider:
	Event Service Provider:
	Route Service Provider:
	Difference of all providers:​​​​​
	
	Facades:
	Why Use Facades?
	When To Use Facades
	Collections:
	map():
	filter():
	Contracts:​​​Laravel's Contracts are a set of interfaces that define the core’s provided by the framework. For example, a Queue contract defines the methods needed for queueing jobs, while the Mailer contract defines the methods needed for sending email.
	Queues:
	How to use queues:​​​First we will make a queue table in the database using artisan command.
	Difference of queues and jobs:
	Queues
	Jobs

	Event Listeners and Events:​
	​Listeners:​​Listeners are the part of events, when we create an event, we need to make the listener listen to that event and put all our logic in the events.​Same like events, we can make listeners through the artisan command,​​Php artisan make:listener NotifyUser
	Why Use Events & Listeners?

	Notifications:​​​​Notifications can be used to notify users about anything, for example we have a functionality of events and listeners, when a user signed up, it triggers an event which sends notification to the admin about the newly signed up user. We can send notification to the listener of that event.
	Cron job & task scheduling:
	Task Scheduling:
	Cron Job:
	Eager Loading:​​​​When we load relations along with the model it is called eager loading, see example below:
	Lazy Loading:​​​​Lazy loading in Laravel is a feature that allows you to load related data on-demand, rather than loading it all at once when retrieving a record from the database. This can help to improve the performance of your application by reducing the number of database queries executed.
	Laravel Relations:​​​​​Laravel has different relations
	One to One:
	One to Many:
	Many to Many:
	Has one through:
	Has many through:​​
	One to One (polymorphic) :
	One to Many (polymorphic):
	Template Engine:
	Eloquent:
	Throttling:
	Throttling is the function in Laravel through which
	we can limit incoming requests. For throttling, Laravel provides a middleware that can be applied to routes and it can be added to the global middlewares list as well to execute that middleware for each request.

	Query Scope:
	Local scope:
	Global scope:
	Traits:
	Create()/Insert():
	Create:
	Insert:
	Gates:
	Policies:
	Guards:
	Cascade:
	Providers:
	Observers:
	Route Model Binding:
	Replacing id with another field:
	Fillable:
	Guarded:
	Macros:​​
	How to write macros:
	
	Form Request:
	Design Patterns:
	Types of laravel design patterns:
	Singleton Design Pattern:
	Repository Design Pattern:​
	Benefits of Repository pattern:
	Factory Pattern:
	Service Pattern:
	Difference of Repository and Service pattern:
	
	Api Resource:
	Difference of oauth 2.0 and jwt:
	Difference of authentication and authorization:
	Types of errors in php:
	Types of arrays:
	Array Functions:
	Difference of where and when:
	Where:
	When:
	Composer:
	Composer update:
	
	
	Use Case

	
	Composer install:
	Use Case

	Composer dump-autoload:
	
	
	Use Case

	Bind and singleton:
	Bind:
	Singleton:

